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J .  Phys. A: Math. Gen. 20 (1987) 1025-1043. Printed in the U K  

On the inflation, deflation and self-similarity of 
binary sequences. Application: a one-dimensional 
diatomic quasicrystal 

I Aviram 
Nuclear Research Centre Negev, P 0 Box 9001, Beer-Sheva, Israel 

Received 28 April 1986 

Abstract. A p sequence is an infinite sequence of 0 and 1 generated by the production rule 
p ( ~ , w , j ) = [ ( j + l ) / a + w ] - [ j / a + w ] ,  j e  N,  depending upon two parameters: a , w .  The 
properties of quasiperiodic p sequences ( Q irrational j under deflation and inflation transfor- 
mations are investigated. For this purpose, a set of so-called simple replacement rules 
( S R R )  is defined, and it is shown that a p sequence is always transformed into a p sequence 
by repeated application Of S R R .  The parameters of the transformed sequence are calculated 
explicitly and the conditions are given under which a p sequence transforms into itself 
(self-similarity). The theory is applied to the construction of a one-dimensional diatomic 
quasicrystal, whose diffraction spectrum is calculated. 

1. Introduction 

The following theorem has appeared in the literature in many more or less equivalent 
forms and various degrees of generality. The form presented here is closest to that 
found in de  Bruijn (1981), and will be given without proof, with slight changes in 
notation. The symbol [XI represents the greatest integer not exceeding .Y. 

Theorem T. Let a > 1, and w be real numbers, and a f- 2. The sequence 

j e  N p ( a ,  w ,  j )  = [ ( j +  ] ) / c y  + w l - [ j l a  + w I  

is an  infinite sequence of 0 and 1. Let p be related to cy by 

1/a + 1/p = 1. 

Then p ( a ,  w, j )  takes its 1 and 0 on the sets 

C, :  { j ( j = [ ( k - w ) a ] ,  k e  N }  (3 )  

CO: { j l j = [ ( / + w ) P l ,  N I  (4) 

respectively. The sets C , ,  C,, satisfy: C ,  n C,, = E, and C, U C, = N .  

The class of binary sequences generated by (1)  is an interesting object which has 
attracted considerable interest in the past. For a very incomplete list of relevant 
references see Aviram (1986). This paper is largely devoted to the study of properties 
of these sequences under inflation and deflation transformations to be defined below. 
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1026 I Aviram 

A sequence of 0 and 1 defined by ( 1 )  will be subsequently called a p sequence. I t  
is periodic with an integer period J (i.e. p ( a ,  U ,  j + J )  = p(a ,  w, j ) ,  j E N ) ,  if and only 
if a = q /  r is a rational number with J mod q = 0. Unless otherwise specified, a will 
be assumed irrational throughout this paper. 

Dejnition. A finite sequence of 0 and 1 is called a ‘tile’. (This term together with 
‘deflation’ and ‘inflation’ are borrowed from the terminology connected with the 
fascinating subject of Penrose tiles (Gardner 1977). The relationship with this paper 
is that both are concerned with non-periodic structures.) 

In the same paper de Bruijn investigated the construction of new sequences from a 
given one by replacing every 0 and 1 of the original sequence by pre-assigned tiles: 
0- t ’ ,  1 + t”. This process is called ‘deflation’, while the reverse action, to be called 
‘inflation’ ( t ’ +  0, t ” +  l ) ,  is possible only if the original sequence can be partitioned 
into tiles t ’ ,  t “ .  De Bruijn called the deflated sequence the ‘successor’ of the old one, 
while the old sequence is the ‘predecessor’ of the new one. He focused his attention 
on the particular replacement rule ( R R )  r ’ =  10, t ” =  100, and investigated the conditions 
under which a given sequence has predecessors of all orders. 

Dejnition. An infinite sequence of 0 and 1 is said to be ‘self-similar’ under a particular 
replacement rule 0 - t ’ ,  1 + t”  if this deflation process transforms the sequence into itself. 

An immediate consequence of this definition is that if an infinite sequence is self-similar, 
then the process of inflation by the reverse RR ( t ’ + O ,  t ” +  1 )  will also reproduce the 
original sequence. Moreover, both inflation and deflation may be repeated indefinitely, 
resulting in the same sequence at all stages. 

In the following three sections we investigate the conditions under which a p 
sequence will be self-similar. Guided by analysis of the structural properties of a p 
sequence (0 2),  we introduce a finite class of so-called simple replacement rules ( S R R ) ,  
and show that a SRR always transforms a p sequence into another p sequence of the 
same class ( l ) ,  or possibly into itself (0 3) .  The main result of this section is a set of 
formulae relating the parameters a’, p’,  w ’  of the transformed sequence to a, p, w of 
the original one. The roots of the equations a = a‘, p = p’,  w = w ‘  give the values 
6, /?, 6, which make the corresponding p sequence self-similar under a particular SRR. 
It will be sometimes useful to distinguish between ‘generic self-similarity’ when the 
transformed sequence has the same a and p as the original one, but not w, and 
‘complete self-similarity’, when the w are equal, too. If not specified otherwise, 
self-similarity throughout this paper means complete. 

Composite replacement rules ( C R R )  can be constructed by successive application 
of various SRR ( P  4). The main result of this section states that if p(a,  U ,  j )  is (generi- 
cally) self-similar under some C R R  then a is a quadratic irrational number. Conversely, 
if a > 1 is any quadratic irrational number, then a replacement rule (simple or com- 
posite) exists under which the corresponding p ( a ,  w, j )  is self-similar. 

In an earlier paper (Aviram 1986) the theory of binary p sequences was used in 
order to construct a one-dimensional quasicrystal of pointlike identical ‘atoms’ separ- 
ated by one of two line segments of lengths a and 6, whose succession was isomorphic 
to that of the 1 and 0 of a given p sequence with irrational a. We then calculated the 
diffraction spectrum of that quasicrystal. The results of the inflation theory of p 
sequences are used in § 5 in  order to calculate the diffraction spectrum of a one- 
dimensional diatomic quasicrystal. Again, a sequence of line segments a and 6 is 
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constructed isomorphically to a given p sequence. The atoms of one species occupy 
all sites of this quasicrystal with the exception of those sites which survive an inflation 
transformation performed on the original sequence of segments. The remaining subset 
of sites are occupied by the second species. I t  is shown that the locations of the spectral 
lines are the same as if all sites of the quasicrystal were occupied by a single species. 
The intensities, however, are understandably different. 

The main reasons for considering one-dimensional quasicrystals isomorphic to the 
class of p sequences ( 1 )  are: ( a )  they can be built with as little as two characteristic 
atomic separation distances; ( b )  due to the property of class invariance of these 
sequences under inflation and deflation transformations, diatomic one-dimensional 
quasicrystals may be constructed whose Fourier transform is easily calculated. More 
general one-dimensional quasicrystals (see Bombieri and Taylor 1986) may not 
necessarily possess these features. 

2. Structural properties of p(cy,  o, j )  partitions 

Equations (3) and (4) can be easily inverted to give k and I as functions of j :  

where k and 1 are the numbers of 1 and 0, respectively, in the first j positions of the 
sequence. They are staircase functions of j ,  increasing by unity every time a 1 or 0 is 
encountered along the sequence. 

The following result will be needed subsequently. 

Lemma L. Let U, T be irrational numbers, 8, and 02, real numbers, and k c  N. The 
equality 

[ka+ e , ]  = [kT+ e,] k E  N (7) 
is satisfied for all k if and only if a = T, and 8 ,  = 02. 

ProoJ: The ‘if’ part of the lemma is trivial. As for the ‘only if’ part, first assume that 
U >  7. If (7) is true, then [ka+ e , ]<  k ~ +  6J2 for all k, from which it follows that 

k ( a - 7 )  < e2- e, +{ka+ e,)  (8) 
where { } denotes the fractional part of the argument. It is clear that for any given 
values of e , ,  02, there exist some k, such that for all k > k ,  inequality (8) is violated. 
Next, assume that T >  U. I f  (7) is true, then k ~ +  e,< [ka+ e , ] +  1 for all k ;  it follows 
that 

(9) k ( T -  (+) < 1 - ( e2 -  e , )  +a+ e, } .  
Again, it is clear that for any pair e , ,  02, there exists some k2 such that for all k > k2 
inequality (9) will be violated. Therefore U = T. Substitute this result into (8) and (9) 
and combine the inequalities: 

o < e2 - e,  + {ka + e, < 1. (10) 
Since the set {ku+ e,} ,  k = 1,2, .  . . , is uniformly and densely distributed in the open 
interval (0 , l )  (Weyl 1916), the only way in which both ends of the inequality (10) can 
be satisfied for all k is by requiring 8,  = Oz. 
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The elementary properties of p sequences have already been discussed to some extent 
in the earlier paper (Aviram 1986) and will be restated here for the sake of completeness 
in (a ) - (  e)  below. The inflation and deflation properties of p sequences are described 
in detail in (f). 

( a )  Let z ( M ,  J )  denote the fraction of 1 in a finite segment of length M starting 
at  position j of the infinite sequence. The fraction of 0 is 1 - z(  M, j ) .  Let E > 0 be an  
arbitrarily small number. We say that the density of 1 is uniform, on average, if there 
exists MO( E )  such that for any M > M O ( & )  the following inequality holds independently 
o f j ,  andj , :  

I z (M, j l ) - z (w , ) I<E .  ( 1 1 )  

For the sequence p(a ,  w, j ) ,  the fraction z(M, j )  is obtained from (5): z(M, j )  = 
( [ ( j + M ) / a + w ] - [ j / a + w ] ) / M .  Using the inequality a - 6 - 1  < [ a ] - [ 6 ] <  
a - 6 + 1 ,  it suffices to choose M O ( & )  = 2 / ~  in order to satisfy (1  1 ) .  The condition is 
also satisfied independently of the parameters a, w,  a result which follows from the 
fact that k and 1 are O ( j ) .  More precisely, k = j / a  + O( 1 )  and 1 = j / p  + O( 1). Uniform 
average density is, of course, a trivial property of periodic, and uniformly random, 
sequences. If, however, a is irrational, the sequence p ( a ,  w,  j )  will be quasiperiodic 
due to property ( 1 1 )  which distinguishes this from other types of aperiodicity. 

Example E l .  CY = 1.273 457 813 . . . < 2, p =4.656 871 196. . .> 2, w = 0, [PI = 4. The 
sequence p (  a, 0, j )  is 

11101111011101111011110111011110111101110..*. 

Figure 1 shows the graphs of k ( j )  and I ( j )  for this example, upon which the lines of 
slope l / a  and 1/p are superimposed. The staircase functions at any point deviate 
from the average slope by less than one unit of the ordinate. If a and p are irrational 
numbers, the deviation never vanishes at integer values of j ,  except for 0. 

(6)  In a sequence p ( a ,  U ,  j ) ,  one of the binary constituents, 0 or 1 ,  always appears 
isolated, while the other occurs in strings of consecutive elements. Assume that two 
consecutive 1 appear in positions j and j +  1 .  Then, according to (3 )  we must have 

25: 

0 5 10 15 20 25 30 35 40 
J 

Figure 1. The functions k ( j )  and / ( j )  
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[( k + 1 - w ) a ]  - [( k - w ) a ]  = 1. The arguments of the greatest integer functions in this 
equation must therefore satisfy 0 < ( k +  1 - w ) a  - ( k  - w ) a  < 2, or  since a > 1, one 
must have 

1 < a < 2 .  (12) 

An attempt to derive a similar condition for two consecutive 0 leads to 1 < /3 < 2, which 
means, of course, a > 2 .  Conclusion: consecutive 0 and 1 cannot coexist in a p 
sequence. The rule is 

l < a . = 2  P > 2  consecutive 1 and isolated 0 

(this p sequence will be called 1-dominant); 

1 < p < 2  a > 2  consecutive 0 and isolated 1 

(this p sequence will be called 0-dominant). Note that the parameter w plays no role 
in establishing this property. 

( c )  Interchange of a and p produces the complementary sequence p ( p ,  w, j )  = 
1 - p (  a, w, j ) ,  i.e. 0 and 1 are interchanged. The following properties will be specifically 
derived for 1-dominant sequences and can be readily translated to 0-dominant ones 
by use of property (c ) .  

( d )  The number of consecutive 1. What must be the value of p in order to have 
strings of h consecutive 1 preceded and followed by isolated O ?  The sites of these 0 
will be h + 1 places apart, which means that there must exist some values of 1 such 
that [(I+ 1 + w ) p ]  - [ ( I + w ) p ]  = h + 1. Hence 

h < p  < h + 2 .  (13) 

The next question is: given p in the interval (13), are there strings of consecutive 1 of 
different lengths h + g, g = *l, i 2, .  . . , also present in the sequence? By the same 
argument there must be values of 1 for which [ ( I  + 1 + w ) p ]  - [ ( I  + w)p] = h + g + 1, 
from which it follows that 

h + g  < p < h + g  + 2 .  (14) 

Intervals (13) and (14) will partially overlap in two instances: g = -1 and g = 1. This 
means that, for any p in the unit interval 

h < p < h + l  (15) 

the corresponding 1-dominant p sequence will contain strings of consecutive 1 of sizes 
h = [PI and h - 1 = [ p  - 13 only, separated by isolated 0 (see example E l  with [ p ]  = 4). 
Note again that the parameter w plays no role in the determination of this property 
either. 

( e )  What, then, is the role of w ?  Let us take in example E l ,  say, w = -0.4 instead 
of w = 0. The new sequence will be 

1011110111101110111101111011101 111011 , . . . 
By property ( a )  this sequence will have exactly the same density of 1 as the former; 
however the strings of four and three consecutive 1 follow each other in a different 
way. The role of w therefore is to rearrange the binary elements of the sequence while 
preserving the string structure and the average density; it is called the ‘shift parameter’. 
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As a matter of fact, there are as many different p sequences with the same string 
structure (i.e. a) as there are points w on a line, i.e. an uncountable infinity of them. 
This can be proven as follows: for two different values w and w'  construct the sets C, 
and C', according to equation (3): C , :  j = [(k - w ) a ] ,  k E N,  and C',:  j ' =  [(k - w ' ) ( u ] ,  
k c  N.  According to the second part of lemma L these sets will be identical if and 
only if w = 0'. We conclude that two p sequences with the same a but different w 
will eventually differ from each other starting from some finite position j .  

The parameter p (or a) determines the global structure of a p sequence. By looking 
at some finite segment in the middle of an infinite sequence, there is no way one can 
tell what is the value of w. The value of p, on the other hand, may be estimated with 
increasing accuracy by looking at ever longer segments. w governs the beginning of 
the sequence. 

Due to property ( d )  one may regard a 1-dominant p sequence as a succession of 
two kinds of tile: a long tile (L)  composed of h digits 1 followed by a 0, and a short 
tile (S)  composed of h - 1  digits 1 followed by a 0, where h =[PI. The following 
shorthand notation will be used: h l  +O and ( h  - 1)1+0, respectively. In example E l  
we have 11 110 and 11 10. Depending upon the value of w there may be an incomplete 
tile at the beginning. The specification of these two kinds of tile, however, is not 
unique, for we can use appropriate permutations of the digits on the tiles. In example 
E l  the following specifications are equally valid: 1101 1 and 101 1. For some permuta- 
tion, the first tile will be complete. 

Dtlfinition. A covering tile is a tile which can be placed somewhere on a given p sequence 
in such a way that the binary digits on the tile exactly match those underneath. 

Thus 11110, 1110, 0111011 are covering tiles for the sequence in example E l ,  while 
11010, 1001 are not. 

Defnition. A binary covering partition (BCP) is defined by a set of two different covering 
tiles, one short, the other long, an infinite supply of which will enable the covering of 
a given p sequence without gaps. As a consequence of property ( d ) ,  if p is irrational 
(i.e. the p sequence is non-periodic), then the set of two is minimal. The following 
are BCP for the sequence in example El :  (1,1110), (1110,11110), ( l l l l O , l l l O l l l l O ) ,  
etc. Partitions obtained through permutations of digits within the tile will not be 
counted as different. 

Definition. A BCP will be called elementary (EBCP)  if the non-dominant digit occurs 
at most once in any tile. 

In the examples above, the first two are EBCP, while the third is not. The significance 
of this distinction will be clarified subsequently. We shall concern ourselves with BCP 

and EBCP for p sequences only. There are in general four possible EBCP for a fixed 
value of h, two of which are of the 1-dominant type, with h = [ p ]  2 2: 

E B C P ~ :  { S =  ( h  - 1) l  +O, L =  hl+O} 
(16) EBCP2: { S = l , L = ( h - l ) l + O }  

and two of the 0-dominant type, complementary to (16), with h = [ a ] z 2 :  

E B C P ~ C :  { S = ( h - 1 ) 0 + 1 ,  L = h O + l }  
(17) EBCP2C: {s=o, L = ( h - l ) O + l } .  

(f) The distribution of short and long tiles of an EBCP as a function of p. 
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Consider first E B C P I :  {S = ( h  - 1 ) 1 + 0 ,  L = h l  +O}. Denote by w , , ( p )  the fraction of 
h 1 +O tiles in the infinite sequence. By property ( d ) ,  wh = 1 at p = h + 1 and decreases 
monotonically to zero at p = h and p = h + 2. A schematic representation of a few 
w ( p )  is shown in figure 2. The following relationships hold: 

w h - I ( p ) + w h ( p )  = 1 h < p < h + l  h = 2 , 3 , .  . . (18)  

w h + 1 ( p  + 1 ) = wh ( p  ). (19 )  

At p = h - 1 there are only S tiles ( h  - 1) l  +O and the density of 1 is ( h  - l ) / h .  As p 
increases, extra 1 must be accommodated and this will be realised ‘as evenly as possible’, 
meaning that the L tiles h 1 + 0 will be isolated among the short ones, until p reaches 
the value h +f .  At this point the density of 1 is ( h  - f ) / h  = h/2h  + ( h  - 1)/2h, i.e. the 
proportions of S and L tiles are equal. From now on the L tiles prevail, while the S 
tiles will appear isolated among ever larger clusters of long tiles. At p = h + 1 the tiles 
h 1 +O become short and new long tiles ( h  + 1 ) l  +O make their way into the sequence. 

Figure 2. The distribution of long and short tiles of an EecP1. 

The important fact to be realised from this description is that one of the two kinds 
of tile present in the sequence always occurs isolated. In just the way p = 2 was a 
turning point between 0-dominant and 1-dominant sequences, the point p = h + f marks 
the transition from short-tile-dominant to long-tile-dominant sequences for the EBCP 

under consideration. Moreover, an analysis analogous to that carried out for property 
( d ) ,  albeit somewhat more involved, shows that strings of tiles of the dominant type 
always come in two sizes: r and r - 1,  r = 2 , 3 ,  . . . . The rule is as follows. 

In the half unit interval h < P < h +f: for h + l / ( r +  1) < p < h + l / r  there are isolated 
L tiles, and strings of r - 1 and r consecutive S tiles, r = 2 , 3 , .  . . , 

In the half unit interval h + f < p < h + l :  for h + ( r - l ) / r < p < h + r / ( r + l )  there 
are isolated S tiles and strings of r - 1 and r consecutive L tiles, r = 2 , 3 ,  . . . . 

When p equals the upper end of one of the intervals defined above-a rational 
number-the sequence becomes periodic, with a period of r consecutive tiles of the 
dominant type plus one non-dominant. 

Example E2. a = 1.435 258 4 9 . .  . < 2, p = 3.297 485 3 4 . .  . > 2, w = 0, [ p ]  = 3. The 
sequence p ( a ,  w, j )  is 

11011011011101101101110110110110111011011011101101101110110 

1101 101 1101 101 101 110. .  . . 
For the E B C P ~  under consideration S = 110, L = 1 1  10, h = 3 and the following sequence 
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of S and L tiles results: 

sssLssLsssLssLssLsssLssLssLsssLssL.. * . (20) 

Thus 3 + a < p  < 3 + f ,  r =3 ,  and there are strings of three and two consecutive S tiles 
and isolated L tiles. 

Next, consider E B C P ~ :  {S = 1, L = ( h  - 1)1+ O}. Denote by w s ( p )  the frequency of 
S tiles and by w L ( p )  that of L tiles, in the interval h < /3 < h + 1. We already know 
that the frequency of tiles h 1 + 0  varies from zero to one in this interval. Translated 
to E B C P ~  under consideration, this means that 

ws( h )  = 0 W L (  h )  = 1 w , ( h +  1) = w,(h + 1) =;. (21) 

The frequencies are schematically represented in figure 3. In this case the short tiles 
S = 1 always occur isolated throughout the unit interval, while the L tiles form strings 
of r - 1 and r consecutive tiles which coexist in the interval 

h +  1 / r < p  < h +  1 / ( r -  1 )  r = 2 , 3 ,  . . .  . 
Applying E B C P ~  to the sequence in example E2 we obtain the following sequence of 
S = 1 and L = 110 tiles: 

LLLsLLLsLLLLsLLLsLLLsLLLLsLLLsLLLsLLLLs . . *  . ( 2 2 )  
Here r = 4, 3 + a  < p < 3 + $, and have strings of four and three consecutive L tiles. 

Now one can substitute in (20) and (22) L = 1, S = 0 or L = 0, S = 1 and obtain four 
different, albeit pairwise complementary p sequences. We have just described in detail 
the process of inflation mentioned in the introduction; its consequences are very 
interesting. The succession of L and S tiles defined by the corresponding EBCP is 
completely isomorphic to any of two complementary p sequences of 0 and 1. The 
latter may in turn be partitioned according to any of two appropriate EBCP (1  or 2) 
whose tiles can be put into one-to-one correspondence with ‘supertiles’ covering the 
original sequence. These supertiles evidently constitute a BCP of the original sequence. 
One type of supertile will be dominant occurring in strings of s and s - 1 consecutive 
supertiles, the other will be isolated. As an illustration consider the L, S sequence ( 2 2 ) .  
Choose L = 0, S = 1. The resulting p sequence is 

000100010000100010001000010001000100001 . . . . 
This sequence is 0-dominant and we can choose either E B C P ~ C  or E B C P ~ C  with h = 4. 
If we choose E B C P ~ C  then the L, S sequence at this level is SSLSSLSSL . . . . To each 
S and L of this sequence there correspond the following ‘supertiles’ of the original 
sequence, respectively: S +  1101101 101, L +  1101 101 101 101. If, on the other hand we 

Figure 3. The distribution of long and short tiles of a n  EBCPZ 
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choose E B C P ~ C ,  then the L, s sequence at the same level is LLSLLLSLLLSL.. . . To 
each S and L of this sequence there correspond the following ‘supertiles’ of the original 
p sequence, respectively: S +  110, L +  1101101101. Both are BCP of the original p 
sequence. 

Continuing the inflation process one can identify an infinite number of BCP of the 
original sequence with ever larger supertiles, the succession of which at each level is 
isomorphic to some p sequence of 0 and 1. In fact, a EBCP of a successively inflated 
sequence at  any stage necessarily corresponds to a BCP of the original. At each level 
there is a fourfold choice involving the identification of L and S with 0 and 1, and 
subsequently chosing E B C P ~  or 2. The two possible initial EBCP of a given p sequence 
will therefore generate together a tree of p sequences with four branches at each node. 
This is the content of property (f). If the original p sequence is periodic, successive 
inflation steps will eventually end up  in a periodic p sequence with period 1. 

Note that although strongly interrelated, the E B C P ~  and E B C P ~  have been treated 
separately for they generate distinct trees. 

(8 )  Identical ‘neighbourhoods’ at finite distances. Given a p sequence p ( a ,  w,  j ) ,  
choose a site j ‘  and a finite segment of length D ( a  neighbourhood) starting at j ’ .  
There exists a site j ”  at a finite distance from j ‘  such that 

p (  a, j ’ +  d - 1)  = p(a ,  j”+  d - 1 d = 1,2, . . . , D 

where we have omitted w,  for it plays no role. Moreover, l j ” - j ’ l  = O ( D ) ,  i.e. the 
distance / j ” - j ’ l  varies linearly with D. 

The proposition is proven by performing a finite number s of successive inflation 
transformations as follows: let q denote the inflation stage. The initial sequence is 
q = 0, i.e. a,, = a, Do = D, p o  = p (  a,,, j ) .  Select a EBCP of po  and mark the smallest finite 
sequence of whole tiles which completely includes Do. These tiles form the ‘extended 
segment’ E,,? Do.  Inflate p o  by means of one of the two complementary reverse 
(inflation) SRR based upon this EBCP. A new sequence p , ( a , ,  j )  is obtained at stage 
q = 1. Mark the segment D ,  of p ,  which maps Eo.  Select a EBCP of p ,  and extend the 
segment D ,  to E ,  z D , ,  if necessary. Repeat the process until, after a finite number 
of stages q = s, D, has reduced to one binary digit. This bit is the mapping in p ,  of a 
larger segment F o 3  Do of the original sequence p, , .  Move on pT to the nearest bit of 
the same kind, an operation requiring a finite number of steps on p 5 .  This second bit 
will be the mapping in p ,  of another segment F:, of p o  such that F,, n F;, = a, which 
is certain to contain an exact replica of D(,. Furthermore, all the binary digits of the 
same kind map in p ,  disjoint segments FI, of po  which contain replicas of Do. Let E, 
also denote the bit length of the extended segment E, at stage q. Then clearly, 
E , / € , + ,  < y,, where 7, = max(a,  + 1, p, + 1). I t  follows that the product nt-=o y, is 
an upper bound for Ij”-j’l /D~,.  An analogous property of Penrose tilings has been 
referred to by the name of ‘local isomorphism’ (Gardner 1977). 

3. Simple replacement rules (SRR)  and self-similarity 

Definition. A deflation simple replacement rule ( D S R R )  is a rule under which the 0 
and 1 are replaced by the tiles of a EBCP. There are two possibilities for each EBCP, 
a total of eight rules, four of which are, according to (16) and (171, complementary 
to the other four. An inflation simple replacement rule ( I S R R )  is the reverse of the 
corresponding DSRR. 
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According to property ( e )  established in the preceding section, both deflation and 
inflation S R R  transform a p sequence into a p sequence, the latter action being possible 
only if the corresponding EBCP exists. I n  this section we shall derive the parameters 
a’, p’ ,  w ’  of the transformed sequence as functions of a, p, w of the original one. It 
is easier to d o  this using DSRR, the results for a I S R R  being obtained by inverting the 
corresponding formula. 

A classification of the DSRR is in order. They will be labelled 1,2, I C ,  2c correspond- 
ing to the EBCP involved. The additional label L(S) indicates that the dominant element 
of the original sequence is replaced by the L tile (S tile) of the EBCP. The complete 
list of DSRR as functions of h 3 2 is 

D S R R ~ L :  (23) 

DSRRIS: { l + ( h - l ) l + O ;  O+hl+O}  (24) 

DSRR2L: { I +  ( h  - 1)1 +o; o +  1) (25) 

DSRR2S: { I +  1; o +  ( h  - 1)1 +o} (26) 

DSRRICL: { 0 + h 0 + 1 ;  l + ( h - l ) O + l }  (27) 

DSRRICS: {O+(h - 1)0+ 1; 1 + hO+ 1) (28) 

DSRR2CL: {o+ ( h  - 1)O-k 1; 1 +o} (29) 

DSRRZCS: {o+o; l + ( h - l ) O + l } .  (30) 

{ 1 + h 1 + O ;  O +  ( h  - 1)1+0} 

Derivation of a‘, p’ ,  w ’  for D S R R ~ L .  No particular assumption need be made about 
the dominance type of the original p sequence. Perform DSRRIL, (23). The first j 
elements of the original sequence transform into j‘ elements, among which there are 

1: k ’ =  kh + ( j -  k ) ( h  - 1) = j h  - j + k  (31a)  

0:  l ’ = j  (316) 

total: j ’ =  k ’ + l ’ = j h + k = j h + j - 1 .  (3  1 c)  

According to (23) i t  is clear that element j ‘  is a zero. If the transformed sequence 
should be a p sequence then j ’ ,  I’ must, for some p ’ ,  w ’ ,  satisfy the relation 

j ’ =  [ l ’p’+w’p’]  I ’ =  1 , 2 , .  . . . (32) 

First assume that j c  C,;  then k = [ ( j +  l ) / a  +U] ,  by (5). Substitute (316) and (31c) 
into (32) and then (5)  for k. The following equation is obtained: 

[ j / a  + 1 / a  + U ]  = [ j ( P ’ -  h ) + w ’ p ’ ]  j E C , .  (33) 

Next assume that j €  CO; then l = [ ( j + l ) / p - U ] ,  by (6). Substitute again (316) and 
(31c) into (32) and then (6) for 1. The result i s j - [ j / p + l / p - w ] = [ j ( P ’ - h ) + w ‘ p ‘ ] .  
Using the identity j - [a] = [ j  - a + 11, and the relation (2) we obtain equation (33) for 
j E Co. Hence, equation (33) must be satisfied for j E  Cou C ,  = N.  By lemma L, we 
must have therefore 

p ’ =  h +  l / a  = h +  1 - 1 / p  

w ’ =  (1 + a w ) / a P ’ =  (1 + a w ) / ( h a  + 1). 

a ’ = l + a / ( h a - ~ ~ + l ) .  ( 3 6 )  

(34) 

(35) 

Hence 
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Clearly p'> 2, i.e. the transformed sequence is 1-dominant irrespective of the type of 
original sequence. 

For complete self-similarity under D S R R ~  L we must have p' = p and w'  = w. The 
first condition leads to a quadratic equation: p2 - ( h  + l )p  + 1 = 0, whose positive root 
p is the desired result: 

p = ( A + h  + 1 ) / 2  A = [( h + 1) '  - 41"' ( 3 7 )  

& = ( A + h - 1 ) / 2 ( h - 1 ) .  ( 3 8 )  
The equation for w is w = ( 1  + &)/&b. Hence 

(39) 
Notice that [ p ]  = h. 

Using this model calculation the reader should have no difficulty in carrying out 
detailed derivations for other types of DSRR. The results for the first four DSRR ( 2 3 ) - ( 2 6 )  
are summarised in table 1. The formulae for the corresponding complementary DSRR 

( 2 7 ) - ( 3 0 )  can b_e obtained by simultaneous interchanges a - p ,  cy'wp', w - -0, 
w ' w - U ' ,  & w p  and &--& in the listed expressions. A total of eight different 
sequences are obtained by DSRR, four of which are complementary to the other four. 

Self-similarity is impossible under D S R R ~ S ,  for p'  = p exists only in the trivial case 
h = 1, which is the identity replacement rule. 

Let us point out that expressions like ( 3 4 )  and ( 3 6 )  can be obtained easily, although 
perhaps less rigorously, from the asymptotic relations j /  k - a,  j / /  - p. For example, 
if indeed the transformed sequence is a p sequence, then for large k' one must have 
a ' = j ' / k ' = ( j h + k ) / ( j h - j + k ) = ( h a + l ) / ( h a - a + l ) ,  which, of course, is the same 

6 = 1 / p = (  - A + h  + 1 ) / 2 .  

Table 1. Parameters of deflated p sequences and of the corresponding self-similar sequences. 

D S R R I L (  h )  D S R R l S (  h )  I l S R R 2 L (  h )  I > s R R 2 S (  h )  

Replacement 1 + h 1 + O  1 + ( h - 1 ) 1 + 0  1 + ( h  - I ) I + O  1 - 1  
O + ( h  - 1)1+0 O+h1+0  o+ 1 O + ( h - l ) I + O  

(I' I + l / ( h - l + l / ( I )  I + I / ( h - I / a )  h + a - l  h + P - l  
I +  l l ( h  - 1 /P)  I +  I / ( h - I +  l i p )  h + n  - 2  h + P - 2  

P '  h +  1 - I / @  h + l / P  h +  l /CP - 1) h + P - l  
h + 1/a h +  1 - I / ( I  h r o - l  h + l / ( a  - 1 )  

w 1  ( 1 + a w ) / a P '  ( I - P w ) / P P '  - w a / P '  4 / P '  
( 1  + a w ) / ( h a  + 1) (1 - P w ) / ( h P  + I )  - w a / ( h  + (I - I )  w P l ( h  + P - 1) 

Quadratic P 2 - ( h + l ) p + 1 = 0  P 2 - h P - l = 0  P Z - ( h  + 1)P + ( h  - 1 )  = 0 
equation 

A2 ( h  + 1)2-4  h 2 + 4  ( h  - l ) ' + 4  

A + h - l  A + h + 2  
2 ( h - 1 )  2h 

(I ( A  - h + 3 ) / 2  

E ( A +  h +  1 ) / 2  ( A +  h ) / 2  ( A +  h + 1 ) / 2  

w I / @  l / B ( E + I )  0 

[PI h h h 

A is the positive root of A?. 
For the complementary DSRR,  see text. 
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as ( 3 6 ) .  Also notice that the global parameters of the transformed sequence a’, p’ are 
independent of the original shift parameter w .  

We shall now turn our attention to ISRR.  The corresponding replacement rules are 
obtained from the expressions (23)-(30) simply by inverting the arrows. The value of 
h, however, may not be arbitrary: if the original sequence is 1-dominant, then it must 
be h =[PI, while for a 0-dominant original sequence it must be h = [ a ] .  The results 
are summarised in table 2 giving the parameters a‘, p ’ ,  w ‘  of the transformed (inflated) 
sequence as functions of the parameters a,  p, w of the original 1-dominant sequence. 
I f  the original sequence is 0-dominant, the corresponding transformed parameters can 
be obtained from table 2 by interchanging a -p ,  a ’ -p ’ ,  w - -U, w ’ c ,  -U ’ .  Notice 
that the inflated sequence produced by I S R R ~ L  and I S R R ~ S  are complementary to each 
other. So are those produced by I S R R ~ L  and I S R R ~ S .  Because of these relationships 
of complementarity among transformed sequences it follows that by applying the 
appropriate eight ISRR to a given p sequence and its complement, only four distinct 
inflated sequences can possibly result. 

Table 2. Parameters of inflated p sequences. 

Replacement [PI1 + 0 +  1 [ p ] l + o + o  [ P  - 111 +o- t  1 [ p - l ] l + o + o  

(I’ I l i P }  1/(1 - ( P I )  l + { P }  1 + ] / { P I  
P ’  I / ( l - { P } )  I I I P }  1 + I/IP) I + @ )  

U ’  UP - { P I  - UP + { P I  - U P I ( I + { P l )  U P I ( I + I P } )  

[ P - l l l + O + O  [ P - l ] l + O - l  1 - to  1 - 1  

For the inflation o f  0-dominant original sequences, see text. 

4. Composite replacement rules (CRR) and self-similarity 

In  this section we consider only deflation rules, omitting the label D. The direct product 
of two S R R  is defined as the result of applying the two S R R  in succession. The SRR 

may be of any type, and have different values of h 2 2. Example: S R R ~ S ( ~ ) @ S R R ~ L ( ~ ) :  
11 + lOlOl,O-. 1010101}. The direct product of S R R  is not commutative. 

DeJinition. An r-step composite replacement rule is obtained by directly multiplying 
r SRR in ordered succession. 

Due to the general properties of SRR, the application of an r-step C R R  to a p sequence 
will result in a p sequence whose dominance type is determined by the last SRR in the 
product. The long and short replacement tiles of the C R R  obviously constitute a BCP 

of the resulting deflated p sequence. Let the parameters of the original p sequence be 
ao, Po,  w o .  The parameters a,, p,, w,  can be calculated by successive substitution and 
may be cast in general form: 

(40) 
ala”+ a2 - ( a ,  + adPo- a2 
a,ao+ a4 ( a ,  + a4)P,, - a4 

- a,  = 
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where a, ,  a 2 , .  . . , b , ,  b,, . . . are integers depending on the set h, 3 2, i = 1 ,2 , .  . . , r. 
Since the parameters arr P r  satisfy a relation of type (2), one has b, = a ,  +a,,  b? = -a?,  
b, = a ,  + a? - a, - a4,  b, = a4 - a,. Furthermore 

0, =f , (ao )  + wof2(ao)  (42) 

where both f ,  and f 2  are ratios of linear binomials in a. with the same denominator. 
Formulae (40) and (41) are not valid if the S R R  in the product are all of type 2S, 
equation (26), or type 2cS, equation (30), in which cases the relations are linear. 

This discussion leads to the following proposition. If a p sequence is known to be 
self-similar under some C R R ,  then its parameter ar' > 1 must be a root of the quadratic 
equation derived from (40) by setting a ,  = ao: a3u2 - ( a ,  - a 4 ) a  - a? = 0. Then, by 
setting w ,  = wO in (42), we obtain 6 = f , ( G ) / ( l  -f2(G)). Conversely, if a = 
( P i -  Q1 '2 ) /2R> 1, ( P ,  Q>O, R, integers) then there exists at least one C R R  under 
which p ( a ,  j )  will be generically self-similar. We have a ,  - a 4 =  P, a3 = R, a,= 
(0 - P2)/4R and the choice of the set of positive integers { r ,  h ,  , . . . , h, 1 h, 2 2} may 
not be unique. 

I f  the C R R  is defined by an ordered succession i = 1 , 2 , ,  . . , r of SRR of the same 
type (but not 2 s  or 2cS), with possibly different values h , ,  then for 1-dominant S R R ,  

p r  can be expressed as a function of Po in the form of a terminated continued fraction 
with all partial numerators equal to 1. Since P I + ]  depends only on its predecessor PI, 
the expressions in table 1 are used in a chain substitution process which eliminates 
all the intermediate P. For example, p ,  = h ,  + l /po .  Then p2 = h2+ l / p ,  = 
h 2 +  l / ( h ,  + l/po), etc. The same relations are found between a,  and a. for 0-dominant 
S R R .  The common form is 

1 1 1 1  
p , = c , + - -  . . .  -- 

CI + po C , - ]  + c,-,+ 

and its inverse 

1 1  1 1 
FO = - - - . . . - - c , +  c,+ c , - , +  ( c , - p , )  

(43) 

(44) 

where pr ,  po and c, are listed in table 3.  

by equating pa = p, in (43). The following quadratic equation results: 
The condition for generic self-similarity under the corresponding C R R  is obtained 

1 1  
c r - , +  c , +  F 

. . .  1 
p = c , + -  - - .  

Table 3. 

c, P'l 

(45) 

In the last column the subscript d stands for 0 and r. 
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If we substitute p from (45) into the tail of the terminated continued fraction (45) 
and repeat this operation an infinite number of times, we obtain the representation of 
the root of equation (45) by an infinite purely periodic continued fraction with the 
period (c , ,  c,-, , . . . , cI ). 

For the S R R  types IS and 2L (and their complements) where all integers c, 3 1, 
i = 1,2, .  . . , r, a very important consequence emerges from (45). Evidently, [ p ]  = c, 
and p > 1. Substitute po = pr = - l / v  in (44). Then the quantity v satisfies the equation 

1 1 1  v = c, +- . . . - - 
c2+ c,+ v 

i.e. it is represented by the purely periodic continued fraction with the period reversed: 
( c l ,  c 2 , .  . . , c r ) .  Evidently [ v ]  = c1, and v > 1. Equation (46) is related to (45) in the 
following obvious manner. If v is a solution of (46) then - l / u  is a solution of (45). 
We conclude that v = - l / p ' ,  where p' is one of the solutions of (45). Now, p' cannot 
be p, the solution represented by the infinite continued fraction with period 
(c,, c,-, , . . . , c l ) ,  because both p and v > 0. It follows that p ' =  -1/ v is the second 
solution of (45) called the algebraic conjugate of the quadratic irrational p. Since 
v > 1, we have - 1 < p ' <  0. This shows that for SRR types 1s  and 2L, p is a quadratic 
irrational > 1, whose algebraic conjugate satisfies - 1 < p'<O. 

There is an important variant of Lagrange's famous theorem (Khinchin 1964) which 
states: a purely periodic continued fraction with positive integer partial denominators 
and partial numerators equal to 1 represents a quadratic irrational p > 1 whose algebraic 
conjugate satisfies - 1 < p ' <  0. 

Conversely, every quadratic irrational p > 1 whose algebraic conjugate p' satisfies 
- 1 < p '<  0, is represented by a purely periodic continued fraction as above (see, e.g., 
Henrici 1977). 

The last part of the theorem tells us that, given a quadratic irrational p > 1 whose 
algebraic conjugate satisfies - 1 < p '<  0, we can obtain its period by the standard 
expansion algorithm, thus actually determining the ordered set h i ,  i = 1,2, . . . , r, which 
goes into the construction of the CRR. 

5. Application: the one-dimensional diatomic quasicrystal 

Let us begin with a brief review of the main results derived in the earlier paper (Aviram 
1986) for the one-dimensional monatomic quasicrystal. Two characteristic line seg- 
ments of length a and b, with U = a / b  > 1, were used to construct a sequence of line 
segments isomorphic to a given sequence p (  a, w, j )  by matching element 1 with segment 
a, and element 0 with segment b. (In the quoted paper we had dimensionless segments 
CT and 1; here, however, it will be more convenient to specify the lengths a and b.) 
The total length of the first j segments is xj = j b  + k ( u  - l)b, j = 1,2, .  . . . The model 
system of pointlike identical atoms located at xi was mathematically described by a 
sum of delta functions: 

The weighted average separation between atoms was 
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Provided that a, /3 are irrational, the Fourier transform F ( s )  = 9 G ( x )  is an infinitely 
dense denumerable set of Bragg peaks of zero width located on the s line at the points: 

(49) s = s,,, = ( m  + n / a ) / A  m , n = 0 ,  * I ,  1 2  , . . .  . 

Then F ( s )  = F(s,,) = A,, exp(i@,,,), where the amplitude and phase are given by 

where 

Rmn = b ( m ( a -  1 )  - n ) / A  m,n=O, * I ,  1 2  , . . .  . ( 5 2 )  

The spectrum s,,,, the amplitude A,,, and the phase Om,, are all parametrised by two 
sets of integers rn, n, and F (  s )  = 0 for s f s,,,. 

The spectral lines are zero width Bragg peaks densely filling the reciprocal one- 
dimensional s-space; their positions s,,, are expressed as linear combinations of two 
integers m, n taken in an irrational ratio a, unique for all spectral lines of a given 
quasicrystal. Except for the fact that they enter the scaling factor A common to all 
s,,,, the characteristic lengths a and b d o  not affect the locations of the spectral lines 
which are governed by the sequence parameter cy. The set of spectral lines is denumer- 
able, and in an arbitrarily small neighbourhood of any given line there are infinitely 
many other spectral lines. The distribution of amplitudes A,,,, on the other hand, is 
governed through R,, by the ratio U of the characteristic lengths and not by cy. Both 
s,, and A,, are independent of the shift parameter w which affects only the phase 
On,,,. A one-dimensional diatomic quasicrystal will now be constructed by taking 
advantage of an inflation transformation. Consider a sequence of segments of lengths 
a and  b, isomorphic to a given p sequence (figure 4 (top), based on example E2). The 
coordinates of the endpoints are x,. Inflate the sequence by an)' appropriate replace- 
ment rule, simple or composite. Figure 4 (middle) shows the result of this operation 
for ISRRIL, whereby a sequence of segments a' and b', U'= a ' / b ' >  1, is obtained. The 
endpoint coordinates x, form a subset of (x,). Let the sites x, be occupied by atoms 
of one species (open circles), while the remaining sites of the original sequence are 
occupied by another species (crosses), figure 4 (bottom). This model system may be 
described by the expression 

G(x)+ G' (x )  = Q C 6(x -x ,  ) + ( Q ' -  Q )  ~ ( x - x ,  ) (53) 
I i 

a a b a a b a a a b .  
b :  : :  : . : :  ' : .  : . .  ' : : .  : '  : . : ; :  : .  

XI 

b' , b' b' , a' , b' , . . .  
X j '  

0 2 : =  - y ^ -  ? .'.- = x - =  = = =  = = -  .- - . ' -  - - -  A I . , A  

Figure 4. The construction of a diatomic one-dimensional quasicrystal. 
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where Q, Q’ are the scattering amplitudes of the two species. The Fourier transform 
being a linear operation, we have for this model system 

F (  Y )  = $G(x) + $G’( x) .  ( 5 4 )  

All we have to d o  in this instance therefore is to add with appropriate weights the 
Fourier transforms of two monatomic one-dimensional quasicrystals. Both quasicrys- 
tals are generated by p sequences related to each other by an inflation transformation. 
An interesting property of such a diatomic quasicrystal has been announced in the 
introduction: the positions of the spectral lines in the one-dimensional reciprocal 
s-space are exactly the same as if all sites were occupied by a single species, and there 
are no more, and no less, lines than in the case of single species occupancy. The 
intensities, however, are different. 

Let us illustrate this by a simple model calculation based on I S R R ~ L .  The inflated 
segments are 

( 5 5 )  

Using the inflated parameters a’, p’ ,  w ‘  from the appropriate column of table 2 ,  we 
calculate the weighted average separation between atoms of species Q‘ (open circles 
in figure 4):  

A ’ = ( a ‘ / a ’ +  b ’ / P ’ ) = p A  (56)  

where p = p ( p )  = p. By taking 9 G ’ ( x ) ,  we obtain the location of the spectral lines of 
this species alone: 

s,,, = (m’+ n ’ / a ’ ) / A ’  

a ’ =  [ P I U  + b b’= [ p  - l ] a  + b. 

= ( ( m ’ - [ p  - l ] n ’ ) + (  - m’+[P]n‘) /a) /A m’ ,n’=O,  * l ,  * 2  , . . .  . (57)  

Set 

m = m ’ - [ p  - l ]n’  n = -m’+[P]n’ .  (58) 

Then s,,, in ( 5 7 )  coincides with (49) ,  and since the linear transformation (58)  is never 
singular, there is a one-to-one correspondence between (m, n )  and (m’, n’):  the spec- 
trum s,,, ,, is identical to s,,,”. The inverse of (58) is 

m ’ =  [ p ] m + [ p  - l ]n n ’ = m + n .  ( 5 9 )  

Write ~ G ’ ( x )  = A,,, 
(50 ) - (52 )  and using (591, we obtain 

exp(i8, ,, 1. Then, applying to this species the general formulae 

a, ,, = b‘(m’(o’- 1 )  - n’)/A’ 

= b( (U - 1 ) - n 11 (AP ) = a,,,! (I, (60 )  
where 9 = $ ( p )  = p. Similarly, we have 

O m  n = 8 m n  + T f l m n l P  (61)  

where cp = cp(p) = p / ( P  - l ) ,  and 
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The Fourier transform of the whole diatomic quasicrystal is then 

m , n = 0 ,  i l ,  1 2  , . . .  . ( 6 3 )  

Notice from ( 6 1 )  that the phase difference Om,,,,- Om,, is independent of w. It follows 
that, just as in the monatomic case, the experimentally measurable quantity I F (  s,,,,,) 1' 
is completely independent of the shift parameter of the basic sequence p (  a,  w, j ) .  The 
general form of equations (56 ) ,  (60 ) - (63 )  is the same for all I S R R  listed in table 2 and 
their complements, the only difference residing in the values of the scaling functions 
p ,  $, cp. In addition, it is easy to see that, as long as we choose the matching of inflated 
segments in such a way that a' /  b '> 1, I S R R ~ L  and 1s give identical diatomic quasicrys- 
tals and  so d o  I S R R ~ L  and 2 s .  The same is true for the corresponding pairs of 
complements. The results are summarised in table 4, under the assumption that the 
following matching is conserved for all original sequences: 1 -+ a, O-, b, a /  b > 1. 

Table 4. Scaling functions for I S R R  

I S R R I L ,  1s I S R R 2 L ,  2s I S R R ~ L C ,  1Sc I S R R Z L C ,  2 s C  

Replacement a'  = [ / ? ] a  + b a ' =  [ p  - I ] a  t b a ' =  [ a ] b + a  a ' = [ a - l ] b + a  
b ' = [ p  - I ] a +  b b ' = a  b ' = [ a  - l ] b + a  b ' =  b 

m '  [ P l m + [ P - l l n  m + n  [ a ] m  + n m 
n '  m + n  [ p - l ] m + [ p - 2 ] n  m [a  - l ] m + n  

P P P l ( 1  + { P I )  ff a / ( ]  + { a } )  

* P - P I ( l t { P l )  - f f  a / ( l  + { a ) )  

rF P / ( P  - 1) P / [ P - I l  - f f / ( a - l )  - f f / [ f f - l ]  

As for inflation under a composite replacement rule, it can be shown that the double 
indices ( m ' ,  n ' )  of the spectrum of species Q' are always related to ( m ,  n )  by non- 
singular linear transformations. This situation leads to the conclusion that the spectral 
lines are located as if the quasicrystal were monatomic, no matter what inflation 
transformation was used in order to locate the atoms of species 0'. In  order to 
appreciate the significance of this result, let us recall what happens in the periodic 
case. The spectrum of an  infinite one-dimensional array of pointlike identical atoms 
equally separated by a distance a is a periodic array of Bragg peaks of zero width, 
equal amplitude and equally separated in  the reciprocal space by a distance l / a .  Now, 
if we replace, say, every third atom with an atom of another species (scattering 
amplitude), we obtain a periodic diatomic one-dimensional crystal whose spectral lines 
are equally separated in the reciprocal space by a distance 1/3a ,  with every third line 
having a different amplitude from the other two. In  other words, the periodic diatomic 
crystal exhibits more spectral lines per unit length of reciprocal space than in the case 
of single species occupancy, a situation very much unlike that obtained for the diatomic 
quasicrystal. It should be realised, however, that this interesting property of quasicrys- 
tals is characteristic of the particular subset of sites chosen for species Q', namely the 
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sites surviving an inflation operation. Other choices will almost certainly destroy this 
property. 

The general idea of this section may be carried one stage further, whereby the 
sequence of inflated segments a '  and b' is inflated once more. The resulting segments 
a", b" produce a new sequence of sites x,., which form a subset of (x,,). A triatomic 
quasicrystal may thus be constructed with the addition of a third species 0"; the 
spectral lines as before will be located as if the whole quasicrystal were monatomic, 
etc. 

6. Concluding remarks 

The major part of this paper was dedicated to the investigation of the properties of 
quasiperiodic p sequences undergoing deflation and  inflation operations under simple 
replacement rules. A set of formulae relating the parameters of the transformed 
sequence to the original one were derived; it was shown that a p sequence always 
transforms into a p sequence under repeated application of SRR.  The condition for 
self-similarity under a particular replacement rule, simple or composite, is that the 
parameter a be a quadratic irrational greater than one. This property is strongly related 
to the theory of purely periodic continued fractions. 

The results were then used in order to construct a diatomic one-dimensional 
quasicrystal whose diffraction spectrum was calculated. The spectral lines lie at the 
same locations as if the whole quasicrystal were monatomic, which is a direct con- 
sequence of the particular way in which two atomic species share the sites of the 
quasicrystal between themselves. Moreover, polyatomic one-dimensional quasicrystals 
may be constructed by successive inflation transformations, the spectral lines being 
invariably located at the same places in the Fourier space. Only the intensities and 
phases are affected in the process. 

Finally, a comment on the inverse problem is in order. The crystallographer-or 
perhaps, the quasicrystallographer for that matter-is usually interested in extractirig 
from the diffraction spectrum some information about the relative positions of atoms 
in the crystal. Although this work may have shed some light on the way in which a 
mathematical model of a rather particular diatomic one-dimensional quasicrystal would 
respond to the probing of a diffracting beam, the practical problem is far from being 
resolved. As the monatomic one-dimensional quasicrystal isomorphic to a p sequence 
depends on only two parameters, one may hope to deduce something of its structure 
from an analysis of positions and relative intensities of the strongest peaks. The analysis 
of a diatomic quasicrystal, however, is further complicated by additional parameters 
such as scattering amplitudes, the inflation rule, etc. 

Numerous experimental and  theoretical investigations of three-dimensional quasi- 
crystals-in particular, the icosahedral phase of rapidly cooled alloys (Schectman el 
al 1984)-are currently under way. It is not as yet clear how the present work could 
be extended to higher dimensions. 
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